Weβre on a mission to build the worldβs most structured and industry-relevant AI course β crafted to help you crack interviews at MAANG and top startups. And the best part? Itβs 100% FREE!
Welcome to the series - Complete Numpy - Basic to Advanced. Notes Link : Complete Numpy - Basic to Advanced
Github Code Repository Link: Decode-AiML Repository
Lecture 4.1) Introduction to NumPy - Why is NumPy Fast? - NumPy vs Pandas vs Lists - Hindi
Video Link: Watch on YouTube
Video Description:
π Topics Covered:
#NumPy #PythonForDataScience #NumPyVsPandas #NumPyVsLists #DSWithPython #MachineLearningHindi #PythonLibraries #NumPyHindi #DSAHindi #PythonBeginners #decodeAiML
Lecture 4.2) NumPy Data Types Explained - Homogeneous vs Heterogeneous Arrays - NumPy Full Tutorial - Hindi
Video Link: Watch on YouTube
Video Description:
π Topics Covered:
#NumpyTutorial #NumpyDataTypes #PythonHindi #DataScienceHindi #MachineLearningHindi #PythonForBeginners #decodeAiML
Lecture 4.3) Creating NumPy Arrays - Basics - Reading & Writing NumPy Arrays (Text & Binary Files) - Hindi
Video Link: Watch on YouTube
Video Description:
π Topics Covered:
#NumPyTutorial #PythonForDataScience #NumPyArrays #PythonTutorial #DataScienceWithPython #NumPyHindi #DecodeAiML
Lecture 4.4) NumPy Math Basics - Diagonal, Identity, Triangular Matrix, Random & Log/Linear Space - Hindi
Video Link: Watch on YouTube
Video Description:
π Topics Covered:
#NumPy #PythonForDataScience #NumPyTutorial #PythonTutorialHindi #MachineLearning #DataScience #NumPyMath #MatrixAlgebra #PythonBeginners #DecodeAiML
Lecture 4.5) NumPy Arrays with BuiltβIns - arange, linspace, logspace, diag, eye, tri, rand, randn - Hindi
Video Link: Watch on YouTube
Video Description:
π Topics Covered:
#NumPy #PythonForDataScience #NumPyTutorial #PythonHindi #MachineLearning #DataScience #NumPyArrays #PythonTutorial #DecodeAiML
Lecture 4.6) Dimension, Shape, Axis, Vectorization & Broadcasting in NumPy - Explained with Examples - Hindi
Video Link: Watch on YouTube
Video Description:
π Topics Covered:
#NumPy #PythonDSA #MachineLearning #DataScience #Vectorization #Broadcasting #PythonTutorial #PythonHindi #ArrayOperations #PythonProgramming #DecodeAiML
Lecture 4.7) Hands-on Indexing, Slicing & Subsetting in NumPy - Explained with Examples - Hindi
Video Link: Watch on YouTube
Video Description:
π Topics Covered:
#NumPy #PythonDSA #DataScience #NumPyIndexing #NumPySlicing #NumPyTutorial #PythonProgramming #DSAInPython #PythonHindi #CodingForBeginners #DecodeAiML
**Lecture 4.8) Hands-On Maths on NumPy Arrays | Built-In Maths Functions | Broadcasting explained | Hindi** |
Video Link: Watch on YouTube
Video Description:
π Topics Covered:
#NumPy #PythonDSA #MathWithNumPy #Broadcasting #PythonProgramming #NumPyTutorial #NumPyMath #PythonHindi #DSAInPython #CodingForBeginners #DecodeAiML
Lecture 4.9) NumPy Statistics & Linear Algebra - Axis Explained - Built-in Functions - Hands-On - Hindi
Video Link: Watch on YouTube
Video Description:
π Topics Covered:
#NumPy #PythonDSA #NumPyStatistics #NumPyLinearAlgebra #AxisInNumPy #PythonProgramming #NumPyTutorial #PythonHindi #DSAInPython #CodingForBeginners #NumPyMath #DataScienceWithPython #decodeAiML
Lecture 4.10) NumPy Built-in Functions - ravel, moveaxis, squeeze, concatenate, stack, split, repeat - Hindi
Video Link: Watch on YouTube
Video Description:
π Topics Covered:
#NumPy #NumPyFunctions #PythonDSA #PythonProgramming #NumPyTutorial #PythonHindi #DataScienceWithPython #DSAInPython #CodingForBeginners #NumPyArrayManipulation #PythonNumPy #DecodeAiML
Decode AiML YouTube Channel : @decodeAiML
π¨βπ» About Decode AiML
Weβre not your average tutorial channel. Decode AiML is built by IIT alumni with hands-on experience at companies like Google, NVIDIA, Samsung Research, Oracle, and Flipkart.
π Our mission is simple:
Help you crack roles like Applied Scientist, Data Scientist, and ML Engineer at MAANG and other top tech companies β with real-world guidance that bridges the gap between YouTube tutorials and actual interview expectations.
Subscribe and start decoding your future in AI.